Random Forests for multiclass classification: Random MultiNomial Logit

نویسندگان

  • Anita Prinzie
  • Dirk Van den Poel
چکیده

Several supervised learning algorithms are suited to classify instances into a multiclass value space. MultiNomial Logit (MNL) is recognized as a robust classifier and is commonly applied within the CRM (Customer Relationship Management) domain. Unfortunately, to date, it is unable to handle huge feature spaces typical of CRM applications. Hence, the analyst is forced to immerse himself into feature selection. Surprisingly, in sharp contrast with binary logit, current software packages lack any feature selection algorithm for MultiNomial Logit. Conversely, Random Forests, another algorithm learning multi class problems, is ju st like MNL robust but unlike MNL it easily handles high-dimensional feature spaces. This paper investigates the potential of applying the Random Forests principles to the MNL framework. We propose the Random MultiNomial Logit (RMNL), i.e. a random forest of MNLs, and compare its predictive performance to that of a) MNL with expert feature selection, b) Random Forests of classification trees. We illustrate the Random MultiNomial Logit on a cross-sell CRM problem within the home -appliances industry. The results indicate a substantial increase in model accuracy of the RMNL model to that of the MNL model with expert feature selection. Keywords—multiclass classifier design and evaluation, feature evaluation and selection, data mining methods and algorithms, customer relationship management (CRM)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Multiclass Classification: Generalizing Random Forests to Random MNL and Random NB

Random Forests (RF) is a successful classifier exhibiting performance comparable to Adaboost, but is more robust. The exploitation of two sources of randomness, random inputs (bagging) and random features, make RF accurate classifiers in several domains. We hypothesize that methods other than classification or regression trees could also benefit from injecting randomness. This paper generalizes...

متن کامل

Multinomial Logistic Regression Ensembles

This article proposes a method for multiclass classification problems using ensembles of multinomial logistic regression models. A multinomial logit model is used as a base classifier in ensembles from random partitions of predictors. The multinomial logit model can be applied to each mutually exclusive subset of the feature space without variable selection. By combining multiple models the pro...

متن کامل

Variable Selection and Updating In Model-Based Discriminant Analysis for High-Dimensional Data

A model-based discriminant analysis method that includes variable selection is presented. The discriminant analysis model is fitted in a semi-supervised manner using both labeled and unlabeled data. The method is shown to give excellent classification performance on several high-dimensional multiclass datasets with more variables than observations. The variables selected by the proposed method ...

متن کامل

Diabetic Retinopathy Identification and Severity Classification

Manual examination of retina images for the diagnosis of diabetic retinopathy is a time consuming and error prone process, requiring identification of inconspicuous anomalies like micro-aneurysms and exudates. In this work, we explore machine learning techniques for automatic identification and severity classification of diabetic retinopathy from retina images. The presented approach involves i...

متن کامل

The random coefficients logit model is identified

The random coefficients multinomial choice logit model, also known as the mixed logit, has been widely used in empirical choice analysis for the last thirty years. We prove that the distribution of random coefficients in the multinomial logit model is nonparametrically identified. Our approach requires variation in product characteristics only locally and does not rely on the special regressors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2008